BAIN MUSC 336 Introduction to Computer Music

CHAPTER 1

The Digital Representation of Sound, Part One: Sound and Timbre

"All things that make sound move, and in some very metaphysical sense, all things that move (if they don't move too slowly or too quickly) make *sound*."

- Burk et al., Music and Computers

1.1 What is Sound?	Absolute/relative change	1.4 Timbre
Time-domain plot	Ratiometric change	Spectra
Sound as a function	Fixed arithmetic change	Spectral features
Compression/rarefaction	Watt	Tone color
Newton's Third Law	Decibel (dB)	
Input/output relation	Anechoic chamber	Amplitude Envelope
Graph		- Attack (A)
Visualization of a function	1.3 Frequency, Pitch and	- Decay (D)
Deformation/perturbation	Intervals	- Sustain (S)
-	Frequency (physical)	- Release (R)
Sample	Pitch (psychophysical/cognitive)	- Transients
Sampling		Trapezoidal envelope (ASD)
Continuous/discrete	Range of human hearing:	- - · · ·
Transducer	ca. 20 Hz – 20,000 Hz	Spectrum
Basilar membrane	Infrasonic range (0-20 Hz)	-
Time-to-frequency conversion	Presbycusis	Spectral components
Digital signal		- Partials
Raw data	Waveform	- Harmonics
	Periodic waveform	- Overtones
1.2 Amplitude	Wavelength	
Physical/acoustic measurement	Wave cancellation	Sinusoids
Psychophysical/cognitive		Tuning fork
Attribute	Speed of sound (345 m./sec.)	
	w = s * p	Fourier components
Sine wave/pure tone	f = 1/p	Fourier analysis
Amplitude envelope		Gibbs ringing
Phase cancellation	Linear scale	~
Chirp	Logarithmic scale	Spectral histograms
-	Octave	
Amplitude, intensity and	Base-2 logarithmic perception	
loudness		
Energy	Fletcher Munson curves	
Logarithmic perception	Mid-frequency range sensitivity	

Terms & Concepts

Reference

Burk, Phil, Larry Polansky, Douglas Repetto, Mary Roberts and Dan Rockmore. 2011. *Music and Computers: A Theoretical and Historical Approach*, Archival Version. Available online at: http://music.columbia.edu/cmc/MusicAndComputers/.