BAIN MUSC 336
Introduction to Computer Music

Chapter 1 The Digital Representation of Sound, Part One: Sound and Timbre

"All things that make sound move, and in some very metaphysical sense, all things that move (if they don't move too slowly or too quickly) make sound."

- Burk et al., Music and Computers

Terms \& Concepts

1.1 What is Sound?	Absolute/relative change	1.4 Timbre
Time-domain plot	Ratiometric change	Spectra
Sound as a function	Fixed arithmetic change	Spectral features
Compression/rarefaction	Watt	Tone color
Newton's Third Law	Decibel (dB)	
Input/output relation	Anechoic chamber	Amplitude Envelope
Graph		- Attack (A)
Visualization of a function	1.3 Frequency, Pitch and	- Decay (D)
Deformation/perturbation	Intervals	- Sustain (S)
	Frequency (physical)	- Release (R)
Sample	Pitch (psychophysical/cognitive)	- Transients
Sampling		Trapezoidal envelope (ASD)
Continuous/discrete	Range of human hearing:	Spectrum
Basilar membrane	Infrasonic range ($0-20 \mathrm{~Hz}$)	Spectrum
Time-to-frequency conversion	Presbycusis	Spectral components
Digital signal		- Partials
Raw data	Waveform	- Harmonics
	Periodic waveform	- Overtones
1.2 Amplitude	Wavelength	
Physical/acoustic measurement	Wave cancellation	Sinusoids
Psychophysical/cognitive		Tuning fork
Attribute	Speed of sound ($345 \mathrm{~m} . / \mathrm{sec}$.) $w=s * p$	Fourier components
Sine wave/pure tone	$f=1 / p$	Fourier analysis
Amplitude envelope		Gibbs ringing
Phase cancellation	Linear scale	
Chirp	Logarithmic scale Octave	Spectral histograms
Amplitude, intensity and loudness	Base-2 logarithmic perception	
Energy	Fletcher Munson curves	
Logarithmic perception	Mid-frequency range sensitivity	

Reference

Burk, Phil, Larry Polansky, Douglas Repetto, Mary Roberts and Dan Rockmore. 2011. Music and Computers: A Theoretical and Historical Approach, Archival Version. Available online at:
http://music.columbia.edu/cmc/MusicAndComputers/.

