BAIN MUSC 336 Introduction to Computer Music

CHAPTER 3 The Frequency Domain

"[The] French scientist and mathematician Jean Baptiste Fourier (1768-1830) proved...that any *periodic waveform* can be expressed as the sum of an infinite set of sine waves. The frequencies of these sine waves must be integer multiples of some fundamental frequency."

- Burk et al., Music and Computers

3.1 Frequency Domain	Odd-partial symmetry	3.4 The DFT, FFT, and IFFT
Domains	Vectors	Discrete Fourier Transform
- Time $(a \text{ vs. } t)$	- Magnitude	(DFT)
- Frequency (<i>a</i> vs. <i>f</i>)	- Direction	Fast Fourier transform (FFT)
Envelopes	Vector addition	Inverse Fast Fourier transform
- Transients		(IFFT)
+ Attack stage	Sampling and Fourier	Sample rate
+ Decay stage	Expansion	Frame size (as a power of 2)
+ Release stage	Fourier expansion	Number of bins
- Steady state stage	Fourier coeficients	Bin width
- Kulling average envelope Deak envelope	Bins (See also § 3.4)	Windowing
Poot mean squared (RMS)	Waterfall 3D plot	Histogram of frequencies
amplitude	1	instogram of nequeneres
Running window technique	3.3 Fourier and the Sum of	number of bins = Frame size / 2
Sonogram $(f y_0, t)$	Sines	
Soliogram $(f \lor s, t)$	Jean Baptiste Fourier (1768-	bin width = f range / # of bins
Dhananhatagraphy	1830)	
Phonophotography	Complex waveforms	3.5 Problems with the
2.2 Dhaaana	Basic waveshapes	FFT/IFFT
3.2 Phasors	- Sine	Time/frequency resolution trade-
Phasor representation of a	- Sawtooth	off
sine wave	- Square	Lobes
Sound analysis	+ Duty cycle = 0.5	Time smearing
Digital manipulation of sound	+ Pulse	8
Sine wave model	- Triangle	3.6 Some Alternatives to the
Phasor function	Spectrum	FFT
Trigonometric functions	Infinite series	Wavelet analysis
Degrees	Fourier series	McAulay-Quatieri (MQ)
Radians	Fourier analysis	Analysis
Angular velocity of the phasor	Fourier coefficients	7 mary 515
Law of superposition (adding	- Low order	Softwara
phasors)	- High order	Apple Grapher
Fourier's theorem	DC term	Desmos GraphingCalculator
Periodic function	Filters (See also § 4.3)	Faber Acoustic SignalScope
Fundamental frequency	- Low, high and band pass	Walfrom Alpha
Overtones, partials and	Hydrophone	womani, Aipna
harmonics		

Terms & Concepts

Reference

Burk, Phil, Larry Polansky, Douglas Repetto, Mary Roberts and Dan Rockmore. 2011. *Music and Computers: A Theoretical and Historical Approach*, Archival Version. Available online at: http://music.columbia.edu/cmc/MusicAndComputers/.